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Abstract

Recent decades have witnessed amazing advances in both mathematical
models of cognition and in the field of cognitive neuroscience. These de-
velopments were initially independent of one another, but recently the fields
have started to become interested in joining forces. The resulting joint mod-
eling of behavioral and neural data can be difficult, but has proved fruitful.
We briefly review different approaches used in decision–making research for
linking behavioral and neural data, and also provide an example. Our exam-
ple provides a tight link between behavioral data and evoked scalp potentials
measured during mental rotation. The example model illustrates a powerful
hypothesis–driven way of linking such data sets. We demonstrate the use of
such a model, provide a model comparison against interesting alternatives,
and discuss the conclusions that follow from applying such a joint model.

Keywords: Joint Modeling; Cognitive Neuroscience; Response Time Data;
ERP.

Like many areas of scientific enquiry, cognitive psychology began with verbally–1

specified theories and gradually progressed to quantitative accounts over time. This resulted2

in mathematical models to describe memory (e.g., Atkinson & Shiffrin, 1968; Raaijmakers3

& Shiffrin, 1981), categorization (e.g., Nosofsky, 1986; Nosofsky & Palmeri, 1997), speeded4
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and unspeeded decision making (e.g., Ratcliff, 1978; Wagenmakers, 2009), and many other5

paradigms (for reviews, see Lee & Wagenmakers, 2013; Lewandowsky & Farrell, 2010).6

A separate and at first mostly unrelated development was the advent of cognitive neu-7

roscience. This field sought to map changes in the brain as they related to cognition,8

using neural measurements obtained through event–related potentials (ERPs; e.g., Sutton,9

Braren, Zubin, & John, 1965; Hillyard, Hink, Schwent, & Picton, 1973), the magnetoen-10

cephalogram (MEG; e.g., Brenner, Williamson, & Kaufman, 1975), functional magnetic11

resonance imaging (fMRI; e.g., Belliveau et al., 1991), and single–unit recordings in non–12

human primates (e.g., Hanes & Schall, 1996; Schall, 2001; Shadlen & Newsome, 1996). As13

progressively more precise measures of the inner workings of the brain became available,14

researchers have become increasingly capable at understanding the neural determinants of15

cognitive processes.16

Some research paradigms have well–specified and tractable mathematical models of17

cognition, and also well–developed methods for neural measurement, for example, sim-18

ple decision–making and reinforcement learning. Researchers interested in such paradigms19

started investigating ways to link the neural and behavioral data more carefully. The lat-20

est developments include so–called joint models, in which data of one kind can inform the21

model fit of the other kind and vice versa (e.g., Purcell et al., 2010; Turner, Forstmann, et22

al., 2013; Anderson & Fincham, 2014; Turner, Forstmann, Love, Palmeri, & van Maanen,23

in press). These accounts aim for the most explicit and careful links, by simultaneously24

modeling neural recordings and behavioral outputs, allowing both kinds of data to inform25

model selection and parameter estimation. Joint modeling provides an important theoreti-26

cal contribution: it allows a researcher to examine common denominators underlying both27

behavioral data and neural data.28

In this paper, we provide an example of how to jointly model behavioral and neural29

data from simple decision–making. As an illustrative example, we apply a joint model30

of behavioral responses and EEG recordings to data from an experiment based on the31

classic Shepard–Metzler mental rotation task (Shepard & Metzler, 1971). However, before32

describing the model, we review different approaches to linking behavioral and neural data,33

with a focus on decision–making research.34

An important change in the development of decision–making models over the past35

twenty years has been a steady “tightening” of the link between neural and behavioral data36

(for reviews and discussion of linking behavioral and neural data, see Teller, 1984). Early37

models of simple decision–making linked behavioral and neural data loosely, by constraining38

the development of behavioral models to respect data from neural measurements. For exam-39

ple, the leaky competing accumulator model developed by Usher and McClelland (2001) was40

structurally constrained to include components supported by neural investigations, such as41

lateral inhibition between accumulating units, and passive decay of accumulated evidence.42

These links were included as part of the model development process, and thereafter there43

was no further attempt to link neural with behavioral data.44

Subsequent models tested the links via qualitative comparisons between predictions45

for corresponding neural and behavioral data sets. This kind of linking was very common in46

early research into decision–making with fMRI methods, in which predictions were based on47

the assumption that an experimental manipulation will influence one particular model com-48

ponent, which leads naturally to predictions for the behavioral data, and also for the neural49
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data (via the hypothesized link). Predictions most frequently take the form “in condition A50

vs. B, behavioral measure X should increase while neural measure Y decreases”. Support51

for the predictions is taken as evidence in favor of the model, including the hypothesized52

link. As an example, Ho, Brown, and Serences (2009) tested predictions generated from53

decision–making models via hypothesized neural links. In one part of their study, Ho et54

al. manipulated the difficulty of a decision-making task and hypothesized that this should55

result in a change in the speed of evidence accumulation in a sequential sampling model.56

By examination of the model coupled to a standard model for haemodynamic responses,57

Ho et al. generated predictions for the blood–oxygen–level dependent (BOLD) response58

profile within regions that are involved in perceptual decision making. These predictions59

were compared with data from an fMRI experiment, which lent support to some accounts60

over others.61

Linking via the testing of qualitative hypotheses was later surpassed by quantitative62

approaches, which provided a tighter link between neural and behavioral data. The most63

common example of quantitative linking in decision–making models takes parameters of the64

decision–making model, estimated from behavioral data, and compares them against the65

parameters of a descriptive model estimated from the neural data. For example, Forstmann66

et al. (2008) correlated individual subjects’ model parameters, estimated from behavioral67

data, against blood–oxygen–level dependent (BOLD) parameter estimates; subjects with68

large changes in threshold parameters also showed similarly large changes in BOLD re-69

sponses.70

Most recently, there have been efforts to link neural and behavioral decision–making71

data even more tightly, by combining both data sets in a single model–based analysis. This72

approach has culminated in models such as that developed by Purcell et al. (2010) which uses73

neural measurements as a model input in order to predict both behavioral measurements74

and a second set of neural measurements. This provides a simultaneous description of neural75

and behavioral data sets, as well as explicating the links between them. A less detailed, but76

more general approach was developed by Turner, Forstmann, et al. (2013) and extended77

by Turner et al. (in press) in this volume. In their method, neural and behavioral models78

are joined by allowing their parameters to covary. Turner, Forstmann, et al.’s approach is79

a “joint” model, in the sense that it allows symmetric information flow: behavioral data80

can influence the neural parameter estimates, and neural data can influence the behavioral81

parameter estimates. This information flow is achieved via a covariance matrix for the model82

parameters. This structure allows the identification of covariance between model parameters83

associated with neural processes and model parameters associated with behavioral processes.84

However, Turner, Forstmann, et al.’s approach differs from our analyses in its focus. The85

covariance matrix of Turner, Forstmann, et al.’s approach means that any and all parameters86

of the behavioral model are allowed to link with any and all parameters of the neural model,87

although all these links are required to be linear. Our approach is less general, but more88

pointed, because it requires the specific instantiation of a single, precise link between one89

parameter of the neural model and one parameter of the behavioral model.190

The joint modeling approach of Turner, Forstmann, et al. (2013) is complementary91

1While it is true that Turner, Forstmann, et al.’s method could, in theory, be restricted to produce our
approach (e.g. by setting almost all priors on the covariance matrix components to zero, and by adding in
nonlinear parameter link functions) in practice this has not been done.
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to the approach we use. For paradigms in which there exist precise hypotheses about the92

links between neural and behavioral models, our approach offers a straightforward way of93

instantiating and testing these hypotheses. For paradigms in which this is not the case,94

Turner, Forstmann, et al.’s approach offers a powerful tool for exploration. What both95

approaches have in common is that they jointly fit the neural and behavioral data, which96

allows behavioral data to influence parameters on the “neural side” of the model, and vice97

versa. A joint model in this sense is able to identify a compromise between the two streams98

of data. This means that, compared to an otherwise–identical model that is fit solely to the99

behavioral (or neural) data, a joint model will always fit more poorly. Coherently managing100

the compromise between fitting neural and behavioral data streams is a strength of the joint101

modeling approach. For example, suppose one was examining a joint model for behavioral102

and neural data, but was not fitting the model in a “joint” manner. Instead, imagine the103

model was examined by fitting first to behavioral data alone, and then later evaluating the104

model by comparing its subsequent predictions for neural effects against the neural data.105

One problem with this approach arises if the model had two sets of parameters (say, A and106

B) which both provided very good fits to the behavioral data, but very different fits to the107

neural data. Suppose that parameter set A provided slightly better behavioral fits, but also108

terrible neural fits, while parameter set B provided good fits to the neural data. Fitting to109

the behavioral data alone would lead the researcher to choose parameter set A, and then to110

reject the model because of the terrible fit to neural data. Joint fitting allows identification111

of compromise parameters (such as set B) which provide good fits to both data streams.112

The two–stage approach to model evaluation, in which the flow of information between113

the two types of data is mostly one–way, was employed by Purcell et al. (2010) (they used114

two different neural data streams, only one of which was a fitting target). While we hope115

that a joint modeling approach has some strengths that the two–stage approach does not,116

Purcell et al.’s work included important other advantages that have been absent in the joint117

modeling work to date. For example, Purcell et al.’s approach was used to conduct pointed118

comparisons between competing hypotheses about both the underlying model structures,119

and the hypothesized links between neural and behavioral data. While such comparisons120

are, theoretically, possible in joint modeling approaches, they can be difficult to implement,121

and have not been investigated to date. The joint model we describe below is an attempt122

to combine the advantages of the confirmatory approach of Purcell et al. (2010) with the123

sophisticated estimation approach of Turner, Forstmann, et al. (2013). Similar to Turner,124

Forstmann, et al.’s approach, we employ a simultaneous estimation procedure. However,125

our approach is confirmatory in that we test an explicit and pre–specified link between126

neural and behavioral data. We fit both behavioral and neural data streams at the same127

time. In the next section, we will describe the behavioral task as well as the two types of128

data.129

Data130

The data we use are from an experiment based on the classic Shepard–Metzler mental131

rotation task (Provost, Johnson, Karayanidis, Brown, & Heathcote, 2013). The mental132

rotation task is a two–alternative forced choice task in which participants are asked to133

examine a pair of stimuli, one of which is rotated relative to the other. Crucially, participants134

are asked to indicate as quickly and accurately as possible whether the stimuli are identical135
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(“same”) or whether one is different from the other (“different”). For instance, in the left136

panel of Figure 1, the right stimulus is the same as the left stimulus. On the other hand,137

in the right panel of Figure 1, the right stimulus is the mirror–image of the left stimulus138

(“different”).139

Figure 1. Two sample stimuli from Provost et al. (2013). Left panel: the right stimulus is the same
as the left stimulus. Right panel: the right stimulus is different from the left stimulus.

The data we use here is from the first session of the first experiment reported by140

Provost et al. (2013). The experiment included five conditions that differed in the angle of141

rotation of the right stimulus: 0◦, 45◦, 90◦, 135◦, and 180◦. The left stimulus was always142

identical to the one displayed in Figure 1.143

Within each condition, half of the stimuli were “same” and half were “different”.144

The corresponding behavioral data were response times and choices from all conditions, for145

all participants. The neural data we will consider are mean amplitudes of single trials of146

the ERP signal corresponding to each trial used in the behavioral analysis. As in Provost147

et al. (2013), we report ERP effects from the midline parietal electrode site Pz, with a148

common average reference. Comparing mean amplitudes at Pz we are able to model a149

specific ERP modulation called “rotation related negativity” (RRN; Heil, 2002; Riečanský150

& Jagla, 2008), which is considered an index of mental rotation. Specifically, we look at151

increased mean amplitude negativity associated with increased angular displacement across152

8 epochs, from 200 to 1,000ms post stimulus onset in 100ms windows. For more details,153

please see the methods section of Experiment 1 and Figure 4 of Provost et al. (2013).154

The use of sequential accumulator models for the analysis of response time data is not155

new (e.g., Link & Heath, 1975; Ratcliff, 1978; Wagenmakers, 2009). For these data, we turn156

to a relatively recent accumulator model: the Linear Ballistic Accumulator (LBA; Brown157

& Heathcote, 2008). An advantage of the LBA is tractability, as it has an easily–computed158

closed–form expression for its likelihood. As a result, it is relatively straightforward to159

expand the model to include a neural component. In the next section, we will introduce160

the reader to the behavioral and neural components of the model and demonstrate how we161

combine them into a joint model.162



JOINT MODELING 6

The Modeling163

In the first sub–section below, we introduce the behavioral model. In the second164

sub–section, we introduce the neural modeling and the link between the two elements.165

The Behavioral Level: LBA166

In the LBA for multi–alternative RT tasks (Brown & Heathcote, 2008), stimulus167

processing is conceptualized as the accumulation of information over time. A response is168

initiated when the accumulated evidence reaches a predefined threshold. An illustration for169

two response options is given in Figure 2.170

Same 
 

Different 
 

Figure 2. The LBA and its parameters for two response options (for this trial, the “different”
response is the correct answer). Evidence accumulation begins at a start point drawn randomly
from a uniform distribution with interval [0, A]. Evidence accumulation is governed by drift rate d,
drawn across trials from a normal distribution with mean ν and standard deviation s. A response
is given as soon as one accumulator reaches threshold b. Observed RT is an additive combination of
the time during which evidence is accumulated and non–decision time t0.

The LBA assumes that the decision process starts from a random point between 0171

and A, after which information is accumulated linearly for each response option. The rate of172

this evidence accumulation is determined by drift rates d1 and d2, normally distributed over173

trials with means ν1 and ν2, and common standard deviation s. The distribution of drift174
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rates is truncated at zero to prevent negative accumulation rates. Threshold b determines175

the speed–accuracy tradeoff; lowering b leads to faster RTs at the cost of a higher error rate.176

Together, these parameters generate a distribution of decision times DT . The ob-177

served RT, however, also consists of stimulus–nonspecific components such as response178

preparation and motor execution, which together make up non–decision time t0. The model179

assumes that t0 simply shifts the distribution of DT , such that RT = DT + t0 (Luce, 1986).180

Hence, the three key components of the LBA are (1) the speed of information processing,181

quantified by mean drift rate ν; (2) response caution, quantified by boundary separation182

that averages to b − A/2; and (3) non–decision time, quantified by t0. The LBA has been183

successfully applied to a number of experimental paradigms including random dot motion184

tasks, brightness discrimination, consumer choice, and many others (e.g., Rae, Heathcote,185

Donkin, Averell, & Brown, 2014; Trueblood, Brown, & Heathcote, 2014; Ho, Brown, Abuyo,186

Ku, & Serences, 2012).187

We specified the standard behavioral aspects of the LBA model using 24 parameters188

per participant for the 20 different response time distributions. The parameters included:189

one upper range of starting point A parameter, two parameters for threshold b (one each190

for “same” and “different” responses), ten parameters for both correct drift vc and for error191

drift ve (two stimuli types — “same”, “different” — times five angle conditions — 0◦, 45◦,192

90◦, 135◦, 180◦), and one non–decision time parameter t0. The 20 different response time193

distributions (and 10 free response probabilities) arose from factorial combination of two194

stimulus classes (same vs. different) with two response classes (same vs. different) and five195

rotation angles. This parameterization was chosen because it provides a reasonable com-196

promise between goodness-of-fit and tractability, as demonstrated in the extensive analyses197

of alternative models for data from a related experiment (Provost & Heathcote, 2015). Im-198

portantly, the evidence accumulators of the model have been linked to neural activity in199

the brain (e.g., Purcell et al., 2010; Gold & Shadlen, 2007). Because of this, mean drift rate200

ν lends itself naturally to be the driving parameter behind our ERP data.201

We used a hierarchical Bayesian implementation of the LBA (Turner, Sederberg,202

Brown, & Steyvers, 2013). Advantages of the hierarchical Bayesian framework include203

the ability to fit the LBA to data with relatively few trials, because the model borrows204

strength from the hierarchical structure. The Bayesian set–up allows for using MCMC205

sampling, which is an efficient approach to parameter estimation (Gamerman & Lopes,206

2006; Gilks, Richardson, & Spiegelhalter, 1996; van Ravenzwaaij, Cassey, & Brown, in207

press). Starting points for the Markov chains were drawn from the following distributions:208

A ∼ N(2, 0.2)|(0, ), both bs ∼ N(1, 0.1)|(0, ), all ten νcs ∼ N(3, 0.3)|(0, ), all ten νes ∼209

N(1, 0.1)|(0, ), and t0 ∼ N(0.2, 0.02)|(0, ). In this notation, ∼ N(x, y)|(0, ) indicates that a210

parameter is normally distributed with mean x, standard deviation y, and is truncated to211

positive values only.212

The hierarchical set–up prescribes that all individual parameters come from a trun-213

cated Gaussian group–level distribution. Thus, for each parameter to be estimated, we esti-214

mated a group level mean parameter and a group level standard deviation parameter. Priors215

for all group level mean parameters were normal distributions, with Aµ ∼ N(2, 1)|(0, ),216

both bµ ∼ N(2, 1)|(0, ), all ten νcµ ∼ N(3, 1)|(0, ), all ten νeµ ∼ N(1, 1)|(0, ), and217

t0µ ∼ N(0.2, 0.1)|(0, ). Priors for all group level standard deviation parameters were gamma218

distributions with a shape and a scale parameter of 1, except for t0σ which has a scale pa-219
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rameter of 3. Starting point distributions for group level µ were all identical to starting220

point distributions for the individual parameters, and starting point distributions for group221

level σ parameters were derived from starting point distributions for the individual param-222

eters by dividing the mean by 10 and the standard deviation by 2. These prior settings223

are quite uninformative, and are based on previous experience with parameter estimation224

for the LBA model. As a result, the specific settings will not have a large influence on the225

shape of the posterior. For more details on distributional choices for the priors, we refer226

the reader to Turner, Sederberg, et al. (2013).227

For sampling, we used 32 interacting Markov chains, and ran each for 1,000 burn-in228

iterations followed by 1,000 iterations after convergence. The two tuning parameters of229

the differential evolution proposal algorithm were set to standard values used in previous230

work: random perturbations were added to all proposals drawn uniformly from the interval231

[-.001, .001]; and the scale of the difference added for proposal generation was set to γ =232

2.38 × (2K)−0.5, where K is the number of parameters per participant (24, in the model233

described above). The MCMC chains blocked proposals separately for each participant’s234

parameters, and also blocked the group–level parameters in {µ, σ} pairs.235

Linking to Neural Data236

The behavioral model above, based on the LBA, specifies a likelihood function for237

the response time data which gives the likelihood of observed data conditional on any given238

set of parameter values. This likelihood function supports all of our statistical analyses.239

The first step in bringing the neural data into the model is to define a likelihood function240

for the ERPs. We will assume that the ERP data, within any particular condition for any241

particular subject, are normally distributed. The next step is to link the parameters of the242

behavioral LBA model above with the parameters of the assumed normal model for the243

ERP data. To begin, we assume that the standard deviation of the normal distribution is244

fixed everywhere, for each subject, and that the mean of the normal distribution is given245

by an offset parameter (α) plus the drift rate parameter times a scale parameter (β):246

ERP ∼ N(α+ v × β, σ) (1)

The model is graphically displayed in Figure 3. Equation 1 provides a precise instantiation247

of the linking hypothesis in this joint model. Our very simple hypothesis is that the neural248

and behavioral data are linked via the drift rate parameter of the model, and that the link is249

a simple linear function. While simple to specify, this link has complicated implications. For250

example, the predicted ERP signal will change across conditions whenever drift rate changes251

– with rotation angle and with same vs. different stimulus pairings, in our experiment. The252

link also implies particular constraints on the model. For example, the drift rate parameter253

is forced to accommodate changes in both behavioral and neural data due to changes in254

rotation angle. The linking parameter serves as a time–sensitive measure of the link between255

behavioral and neural data. The model does more than just re–describe this link: the model256

attempts to capture the fact that different rotation angles cause different ERP measurements257

with a linking function and linking parameters that are identical for all angle conditions. As258

such, the model accounts for different ERPs across conditions entirely through drift rate.259

For the neural data, we estimated one offset parameter α, one standard deviation260

parameter σ, and eight scale parameters β (one for each 100 ms epoch from 200 up to261
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Same 
 

Different 
 

Pz 

Response 
“SAME” 
“DIFFERENT” 
“SAME”    

RT (ms.) 
403 
357 
456  

Same 

Different 

Figure 3. A symbolic display of the joint model. All LBA parameters inform the behavioral
response data (bottom–left). The drift rate corresponding to the response given by the participant
informs the ERP data (bottom–right).

1,000ms). The eight scale parameters allow investigation of how strongly the ERP signal is262

linked to cognition across the eight different time windows (200ms–300ms, 300ms–400ms,263

· · · , 900ms–1,000ms).264

Starting points for the linking parameters were drawn from the following distribu-265

tions: α ∼ N(8, 0.8)|(0, ), all eight βs ∼ N(1, 0.1)|(0, ), and σ ∼ N(5, 0.5)|(0, ). Analogous266

to the LBA parameters, all individual linking parameters were drawn from a truncated267

Gaussian group–level distribution. Priors for all group level mean parameters are normal268

distributions, with αµ ∼ N(8, 2)|(0, ), all eight βµ ∼ N(1, 1)|(0, ), and σµ ∼ N(5, 1)|(0, ).269

Priors for all group level standard deviation parameters are gamma distributions with a270

shape and a scale parameter of 1. Starting point distributions for group level µ were all271

identical to starting point distributions for the individual parameters, and starting point272

distributions for group level σ parameters were derived from starting point distributions for273

the individual parameters by dividing the mean by 10 and the standard deviation by 2.274

Data and code for the full model may be found on the web.2275

2www.donvanravenzwaaij.com/Papers, and also at https://osf.io/2r7bv/.
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Model Comparison276

It is very difficult to judge model fit in an absolute sense. What constitutes a good277

fit, how much of a misfit is acceptable? In practice, it is almost always more fruitful to278

examine comparative goodness-of-fit, and to compare different models. We compare the279

model described above (henceforth ν–ERP) to three competing alternatives:280

• t0–ERP : the behavioral parametrization is identical to that of ν–ERP, but the281

linking parameter to the neural data is non–decision time t0 instead of drift rate ν (see e.g.282

Pouget et al., 2011, for corroborating evidence).283

• Brev–t0–ERP : the behavioral parametrization for drift rates and non–decision time284

are reversed. In this model, we have one νc and one νe instead of ten each, and we have285

ten t0 (one for each stimulus and angle condition) instead of one. Analogous to t0–ERP,286

the linking parameter to the neural data is non–decision time t0. Analogous to ν–ERP, the287

linking parameter to the neural data is now free to vary between stimuli types and angle288

conditions.289

• ν–nonlinear–ERP : identical to the ν–ERP model, but testing a nonlinear link290

function between the drift rates and the ERP mean parameter. The nonlinear link function291

we test is the cumulative normal distribution function, which instantiates the hypothesis292

that scalp potentials might have important ceiling and floor effects. Such effects are plausible293

for many reasons, for example they may be imposed by physical and physiological limits on294

the electrical activity and conductivity of the cortex and scalp.295

Priors and starting values were analogous for all four models.3 The models will be296

compared by visually inspecting the posterior predictives for obvious misfit. Numerically, we297

compare the models by calculating the Deviance Information Criterion (DIC; Spiegelhalter,298

Best, Carlin, & van der Linde, 2002), a measure which balances goodness of fit against299

model complexity. In this sense, DIC is similar to the well–known BIC and AIC measures,300

but DIC extends these by quantifying model complexity as across–sample variability in301

model fit rather than simply counting up the number of free parameters. As such, DIC302

usually assumes a stronger penalty for complexity. Lower values of DIC indicate better303

support for a model from the data.304

Results305

ν–ERP306

As a first check of model fit, we compared posterior predictive data against the neural307

and behavioral data in Figure 4. The figure displays data averaged over participants with308

boxplots representing empirical data and lines representing synthetic data. The left two309

columns show model correspondence to the .1, .3, .5, .7, and .9 quantiles calculated from310

correct RTs (green) and error RTs (red). The right two columns show model correspondence311

to mean ERP amplitudes for each of the eight different time windows (200ms–300ms, 300ms–312

400ms, · · · , 900ms–1,000ms). The first and third column show model correspondence for313

“same” stimuli, the second and fourth column show model correspondence for “different”314

3E.g., all ten t0 used in the Brev–t0–ERP model have the same starting values and prior as the one t0
used in the ν–ERP model; all ten νc used in the ν–ERP model have the same starting values and prior as
the one νc used in the Brev–t0–ERP model.
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stimuli. Rows show model correspondence for different rotation conditions (0◦, 45◦, 90◦,315

135◦, 180◦).316
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Figure 4. Posterior predictives show that the ν–ERP model fit both the behavioral data and the
neural data well. Left two columns: proportion correct (y–axis) plotted against RTs (x–axis) for
the .1, .3, .5, .7, and .9 quantiles calculated from correct RTs (green) and error RTs (red). Right
two columns: mean ERP amplitudes in negative microvolts (y–axis) for eight different time windows
(x–axis). For all panels, boxplots represent empirical data and lines represent posterior predictive
data.

On the whole, the ν–ERP model fit both data sets well, although there is some misfit.317

The model captures the qualitative changes in RT distributions and percentage correct318

across same vs. different stimuli, and across the different angles of rotation. There is a319

tendency for the model to under–predict the accuracy in some conditions, as evidenced by320

the fact that the green lines are slightly lower than the center of the green boxplots and the321

red lines slightly higher than the center of the red boxplots. For the neural data, the model322

seems to capture the ERP distributions over time well. These conclusions about absolute,323

global model fit are necessarily vague, because of the previously mentioned difficulties in324

assessing absolute model fit. This is one of the reasons we turn to model comparison below.325

The first model comparison we provide is to a behavioral–data–only version of the326
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ν–ERP model. The joint model must necessarily fit more poorly than the behavioral–only327

model, because the parameters of the joint model are further constrained to accommodate328

effects in the neural data (in a statistical sense, the behavioural-only model “nests” the329

behavioral side of the ν–ERP model). In order to examine this constraint, we compare the330

posterior predictives of our joint model fits to posterior predictives of a fit to the behavioral331

data alone. Parameter settings were as outlined in section “The Behavioral Level: LBA”.332

The posterior predictives for the behavioral-only model can be found in Figure 5.333
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Figure 5. Posterior predictives show that the behavioral-only version of the joint ν–ERP model fit
the behavioral data well. Displayed are the proportion correct (y–axis) plotted against RTs (x–axis)
for the .1, .3, .5, .7, and .9 quantiles calculated from correct RTs (green) and error RTs (red). For
both panels, boxplots represent empirical data and lines represent posterior predictive data.

Visual comparison of Figure 4 and Figure 5 shows that the model fit is almost identi-334

cal. The joint model compromises slightly on the accuracy fit compared to the behavioral–335

only model, but other than that, the models appear indistinguishable. To provide a sta-336

tistical comparison, the likelihood of the mean parameters averaged over all participants is337

-233.93 for the simple model. For the joint model, when selecting the behavioral component338

of the model and taking the likelihood of those mean parameters averaged over all partic-339

ipants, the value is -255.69, lending further credence to the observation that these models340
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fit the data comparably. It is not appropriate to compare these likelihood values further,341

e.g. by calculating DIC, because the likelihood of the behavioral data under the joint model342

does not satisfy the assumptions of those analyses, because of the conditioning on neural343

data.344

We next examine a different, but plausible, candidate for the link between behavioral345

and neural data: the non–decision time parameter, t0. We do so by comparing two new346

models. The first has a behavioral parametrization which is identical to the original ν–ERP347

model, but has a link to the neural data through the t0 parameter (this model is called348

t0–ERP). The second model corresponds to the original ν–ERP model but with the roles349

for non–decision time (t0) and drift rate (ν) reversed (this model is called Brev–t0–ERP).350

t0–ERP351

Posterior predictive data for the t0–ERP model are shown in Figure 6. Visual in-352

spection of the figure shows that the t0–ERP model fits the behavioral data well, but does353

not capture the neural data as well as the ν–ERP model. This impression is supported by354

comparison of the DIC values for the two models: ν–ERP has an average DIC across partic-355

ipants of 31,880.75, whereas t0–ERP has an average DIC across participants of 31,909.18.356

Within participants, the ν–ERP model was DIC–preferred for 6 out of 9 people.357

Brev–t0–ERP358

Posterior predictive data for the Brev–t0–ERP model are shown in Figure 7. Visual359

inspection of the figure shows that the model fits the behavioral data worse than both other360

models. The Brev–t0–ERP model captures the neural data better than the t0–ERP model,361

but not as good as the ν–ERP model. Again, this impression is supported by analysis of362

DIC values: Brev–t0–ERP has an average DIC across participants of 32,039.64, worse than363

both other models. It is also the model with the poorest DIC out of all models for all nine364

participants.365

ν–nonlinear–ERP366

Posterior predictive data for the ν–nonlinear–ERP are shown in Figure 8. Visual367

inspection of the figure shows that the ν–nonlinear–ERP model fits both types of data well,368

although not as well as the ν–ERP model: ν–ERP has an average DIC across participants of369

31,880.75, whereas ν–nonlinear–ERP has an average DIC across participants of 31,910.22.370

Within participants, the ν–ERP model was DIC–preferred for 6 out of 9 people. For the371

remainder of the results section, we will examine the results of ν–ERP, the best of the372

models we have investigated, in more detail.373

Central Findings374

In sum, we find that of the models we considered, evidence for mean drift rate ν being375

the linking parameter between behavioral and neural data is strongest. Furthermore, we376

find that the relationship between mean drift rate ν and the neural data is linear in nature377

(though for some participants, a nonlinear link provides a better account of the data).378

To highlight the central research findings, we will now examine effects across condi-379

tions. Summarized data are displayed in Figure 9, with corresponding summaries from the380
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Figure 6. Posterior predictive data show that the t0–ERP model fits the behavioral data well,
and the neural data comparatively poorly. Left two columns: proportion correct (y–axis) plotted
against RTs (x–axis) for the .1, .3, .5, .7, and .9 quantiles calculated from correct RTs (green) and
error RTs (red). Right two columns: mean ERP amplitudes in negative microvolts (y–axis) for eight
different time windows (x–axis). For all panels, boxplots represent empirical data and lines represent
posterior predictive data.

posterior predictions of the best-supported joint model, ν–ERP. The top–left panel displays381

median RTs for different conditions and stimulus types. RT steadily increases as the rota-382

tion angle increases, and also median RT is higher for “different” stimuli than for “same”383

stimuli. The model captures both of these data patterns very accurately. The bottom–left384

panel displays mean proportion of correct decisions, separately for different conditions and385

stimulus types. Accuracy drops as the rotation angle increases, though the trend is less386

clear than for RTs. The bottom–left panel confirms the earlier observation that the model387

underestimates some of the accuracies.388

The top–right panel displays ERPs for each 100 ms epoch from 200ms up to 1,000ms389

for “same” stimuli. The amplitude of the ERPs drops as the rotation angle increases. Given390

the size of the error bars (displayed in the far right of the panel), the mismatch between391

the data and the model is modest. The bottom–right panel displays ERPs for each 100 ms392
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Figure 7. Posterior predictive datas show that the Brev–t0–ERP model fits both the behavioral
and the neural data quite poorly. Left two columns: proportion correct (y–axis) plotted against RTs
(x–axis) for the .1, .3, .5, .7, and .9 quantiles calculated from correct RTs (green) and error RTs (red).
Right two columns: mean ERP amplitudes in negative microvolts (y–axis) for eight different time
windows (x–axis). For all panels, boxplots represent empirical data and lines represent posterior
predictive data.

epoch from 200 up to 1,000ms for “different” stimuli. Again, the amplitude of the ERPs393

drops as the rotation factor increases, though interestingly the ERPs for 135◦ and 180◦ have394

reversed order. The model captures the data well, as can be observed by comparing the395

modest mismatch between data and model to the averaged error bars displayed in the far396

right of the panel.397

The bottom–right panel also includes medians of the posterior distribution over the398

group level linking parameter (β), with error bars capturing the central 50% of the distri-399

bution. The size of linking parameter β follows the amplitude of the rotation–angle effects400

in the ERP data. To reiterate, estimates of the linking parameter provide time–sensitive401

measures of the link between behavioral and neural data. For example, at each time window402

the different rotation angles lead to different ERP measurements (the colored dots vertically403

spaced), with some time windows showing very little differences between angles and some404
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Figure 8. Posterior predictive data show that the ν–nonlinear–ERP model fits the behavioral
data well, and the neural data comparatively poorly. Left two columns: proportion correct (y–axis)
plotted against RTs (x–axis) for the .1, .3, .5, .7, and .9 quantiles calculated from correct RTs (green)
and error RTs (red). Right two columns: mean ERP amplitudes in negative microvolts (y–axis) for
eight different time windows (x–axis). For all panels, boxplots represent empirical data and lines
represent posterior predictive data.

showing very large differences. The model captures these effects, even though the linking405

function and linking parameters are identical for all angle conditions. This happens because406

the drift rates are estimated differently for the different angle conditions (and for same vs.407

different stimulus classes), and these different drift rates influence the ERP predictions via408

the linking function.409

Conclusion410

This paper provided an example for cognitive scientists who are interested in in-411

vestigating the correspondence between neural and behavioral data via building computa-412

tional models for both data streams. We compared four different models that differ in the413

parametrization on the behavioral level and in the linking assumptions and showed that414

drift rate is capable of simultaneously explaining the behavioral data and the neural data.415
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Figure 9. Behavioral and neural data, displayed for each stimulus type and angle condition. Top–
left panel: Boxplots display median RT for participants in seconds. Bottom–left panel: Boxplots
display proportion correct for participants. Right panels: ERPs in negative microvolts. The far
right of both panels display error bars, averaged over all time slots. Inset for the bottom–right panel
shows linking parameter β displayed for each time slot with error bars. Error bars in the right panels
represent the central 50% of the distribution.

The joint modeling approach that we have used relies on the precise instantiation416

of hypotheses about the links between parameters related to neural data and parameters417

related to behavioral data. In addition to specifying which parameters are linked, this418

approach also requires specification of a particular linking function. The different model419

versions we investigated differed in these elements, and provided a rigorous framework for420

investigating important theoretical questions. For example, our model comparisons revealed421

that, for most participants at least, a simple linear link between drift rate and average ERP422

amplitude was better than a sigmoidal link. Similarly, an explanation of rotation angle423

effects in both behavioral and neural data was better when based on drift rates than on424

non–decision time. It is, of course, entirely conceivable that both drift rate and non–425

decision time play a role in linking behavioral data to ERP data (recall that DIC preferred426

the ν–ERP model over the t0–ERP model for most, but not all, participants). Provost and427

Heathcote (2015) explored more sophisticated models using a sequential, two–stage process,428

to separate the decision process from the mental rotation process. In Provost et al.’s account,429
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the decision processing is delayed by a random amount of time taken to mentally rotate the430

stimulus, which is equivalent to assuming a random distribution for the non–decision time431

(t0) in our model. Provost et al.’s analyses supported models with variable non–decision432

time processes, and in particular those where the variability increased with the mean. An433

interesting avenue for future research would be to extend the various model comparisons434

we have made (above) to models with sophisticated random distributions for non–decision435

time.436

Our approach to linking neural and behavioral data is not unique, and is not necessar-437

ily the best for many different situations. Still, we propose that, when possible, researchers438

should strive for the tightest possible linking, as this provides the greatest opportunity to439

investigate the underlying linking assumptions. Put differently, joint models that are tightly440

linked allow us to uncover underlying psychological processes that simultaneously explain441

behavioral and neural data. Such an approach is arguably more powerful than more loosely442

linked models, which often do not go beyond correlations between different levels of data.443

The “when possible” caveat relates to the state–of–the–art in the cognitive modeling and444

neural modeling of the research field in question. Very tightly–linked models, with explicit445

and quantitative linking assumptions, are only possible in research fields with tractable446

quantitative models for both behavioral and neural data.447

One of the more interesting implications of joint modeling is trying to relate two448

streams of data with potentially vastly different scales. In our particular example, we are449

combining RT data in seconds (from 0 to 7), proportion correct (from 0 to 1), and mean450

amplitudes at Pz (90% fall in the range -7.5 to 11). Revealing how the different kinds of451

model misfit interact, and how much influence they have relative to one another, is another452

of the strengths of the joint modeling approach we have used. Direct comparison of the453

fits of model that vary in just one component can be very revealing about that component454

(conditional on the other model components being reasonable, of course). For instance,455

our models ν–ERP and t0–ERP differed only on the neural linking component, whereas456

t0–ERP and Brev–t0–ERP differed only on the behavioral component, and these pairings457

allowed us to investigate interesting psychological questions.458

Our example model demonstrates a very tight link between neural and behavioral data459

in the field of simple decision–making. This field has seen some excellent interdisciplinary460

work between neuroscience and psychology (e.g. Purcell et al., 2010). The example model461

we developed shows how to adapt the LBA model for response time data to incorporate462

ERP data, recorded during a mental rotation task. The result is a joint model that can463

simultaneously capture characteristics of data at the behavioral level (response times and464

choice proportions) and the neural level (ERPs). Approaches like this are very exciting,465

because they help to reduce barriers between two fields that have operated alongside another466

rather than together for a long time. We hope that modeling data at different levels with467

a single set of parameters paves the way to a more integrative cognitive science.468
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